In a region, if electric field is defined as $\vec E = \left( {\hat i + 2\hat j + \hat k} \right)\,V/m$ , then the potential difference between two points $A (0, 0, 0)$ and $B (2, 3, 4)$ in that region, is ......$V$
$6$
$12$
$8$
$9$
In a regular polygon of $n$ sides, each corner is at a distance $r$ from the centre. Identical charges are placed at $(n - 1)$ corners. At the centre, the intensity is $E$ and the potential is $V$. The ratio $V/E$ has magnitude.
A charge $Q$ is distributed over three concentric spherical shell of radii $a, b, c (a < b < c)$ such that their surface charge densities are equal to one another. The total potential at a point at distance $r$ from their common centre, where $r < a$, would be
The linear charge density on a dielectric ring of radius $R$ varies with $\theta $ as $\lambda \, = \,{\lambda _0}\,\cos \,\,\theta /2,$ where $\lambda _0$ is constant. Find the potential at the centre $O$ of ring. [in volt]
Two equal positive point charges are kept at points $A$ and $B$ . The electric potential, while moving from $A$ to $B$ along straight line
There is a uniformly charged non conducting solid sphere made of material of dielectric constant one. If electric potential at infinity be zero, then the potential at its surface is $V$. If we take electric potential at its surface to be zero, then the potential at the centre will be